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This paper studies the thermo-fluid-dynamic field generated by a fast stream impinging 
on a plane. The Mach number is less than one, but not so small that compressibility effects 
can be neglected. The analysis requires first the nonviscous solution of the basic equation, 
obtained by assuming the velocity components as independent variables, and then the 
viscous solution in the boundary-layer approximation. The Dorodnitzin-Stewartson trans- 
formation is used to eliminate the dependence of the transport coefficients on the 
temperature. The values of 1 and 0.74 (air case) for the Prandtl number are considered. 
The viscous solution, obtained by means of a MacLaurin series and the Pad~) approximant 
technique, gives practically exact results. 
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I n t r oduc t i on  

The exact analytical determination of a compressible flow 
requires the solution of the nonviscous equations and of the 
viscous boundary-layer equations. Both these systems of 
equations are difficult to solve, and thus it is difficult to obtain 
test cases for the compressible flow. In the incompressible case 
some useful exact solutions are available. In particular, the 
wedge flow has been extensively studied because it has 
applications of interest (its limiting cases give the flow along a 
flat plate and the plane stagnation flow) and is governed by 
very simple equations. In fact, the inviscid stream function is 
proportional to r m + 1 sin (m + 1 - x)0, where r and 0 are polar 
coordinates, m = ~/(~ - ~), and ~ is the half-angle of the wedge. 
The viscous flow can be described in a similarity form and is 
governed by the Falkner-Skan equation (Schlichting 1968). 
These solutions hold only near the stagnation point, because 
as the inviscid velocity increases monotically along the wedge, 
at a certain distance from the origin of the axes the 
compressibility effects cannot be neglected. 

To analyze the compressibility effects on the thermo-fluid- 
dynamic field, one must solve the coupled motion and energy 
equations both in the inviscid field and in the viscous one. 

Forty years ago this problem was studied in an approximate 
form (Cohen and Reshotko 1956). Now we wish to determine 
some thermo-fluid-dynamic fields in an exact analytical form. 

The compressible stream function ~ for the inviscid subsonic 
flow can be determined in the hodograph plane, i.e., by 
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assuming the Cartesian component u and v of the velocity as 
independent variables. In this plane, the equation for ~0 
becomes linear and can be solved by separation of variables in 
terms of simple solutions (Von Mises and Geiringer 1958). 

The boundary-layer equations can be written in a near 
incompressible form by means of the Dorodnitzin-Stewartson 
transformation. 

The thermo-fluid-dynamic field has been found by means of 
expansions in series to be valid near the stagnation point. The 
Pad~ approximant technique has allowed us to obtain a 
representation valid in the entire field, following a procedure 
previously used by Pozzi and Lupo (1988) and Luchini, Lupo, 
and Pozzi (1990). 

Inviscid equations 

By introducing the compressible stream function ~(~y  = p u l p , ,  
~Ox = - p v / p , ,  where u and v are the velocity components along 
the Cartesian axes x and y and the subscript '%" indicates 
stagnation conditions), the two-dimensional (2-D) motion 
equations can be written as 

~kxx(1 --  uZ/a z) - 2~bx,UV/a 2 + ~,.(1 - v2/a z) = 0 (1) 

a z + (? - 1)VZ/2 = a 2 (Bernoulli equation) (2) 

where a is the sound velocity, V z = u z + v 2, and 7 is the ratio 
between the specific heat coefficients. 

If one assumes V and 0, the angle between the velocity vector 
and the x-axis, as independent variables, Equation 2 becomes 

VZ[ 1 - (7 - 1)V2/(2a2)]~Ovv + [1 - (Y + 1)V2/(2a,2)]~'N 

+ v [ 1  - (~, - 3 )v~ / (2a ,~) ' l# , , ,  = 0 (3) 
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It is convenient to introduce the variable z = (7 - 1)V2/(2a2.), 
where a,[2/(~ - 1)] x/z is the limiting velocity V L (the critical 
velocity Vc is related to VL by the equation Vc = VL[(7- 1)/ 
(~ + 1)]1/2); therefore V = a when z = (~, - 1)/(y + 1). In this 
way Equation 2 in a nondimensional  form (a with respect to 
a,) becomes 

a 2 + ,[ = 1 (4) 

and the density and the pressure can be written as 

p/p, = (1 - , [ ) l / ( y -  1);  PIPs = (1 - ,[)~/(Y - 1) (5) 

Solutions of Equation 3 can be written in the form 

~,. = - sin (nO + d.)V'f.(,[) (6) 

where f .  is the gaussian hypergeometric function F(a., b., n + 1, 
z) with 

a., b. = {(~, - 1)n - 1 + [(72 - X)n 2 + 1]}/[2(~/- 1)] 

For  7 = 1.4 and n = 2, f .  becomes a polynomial:  in this case, 
the stream function can be written in a nondimensional  form as 

~, = - sin 20 V2f2(z)/2 (7) 

where f2 = 1 - 5z/2 + 35z2/16 - 21z3/32 and V is non-  
dimensionalized with respect to a suitable reference velocity V~ 
(see Appendix): therefore it is z = k2V 2, where k = VdVL. 

This function vanishes when 0 = 0 and 0 = n/2, and 
therefore it represents the stream function of a flow symmetrical 
with respect to the x-axis impinging on a plane: the inflow and 
the outflow can be obtained from Equat ion 7. The last 
streamline that we consider can be assumed to represent a wall. 

The potential function can be determined from the 
irrotationality equation ~oo = V~bvp,/p. One has 

¢p = V2(1 - 5,[ + 105,[2/16 - 21,[3/8) cos 20/2(1 - z) 5/2 

The expressions giving x(K 0) and y(V, 0) can be obtained from 
the following equations: 

Xv = (~Pv cos 0 - sin O~vp./p)/V 

Yv = (~Ov sin 0 + cos O~vp,/p)/V (8) 

o r  

xo = (~% cos 0 - sin O¢op,/p)/V 

Yo = (~o sin 0 + cos O~opJp)/V (9) 

From Equation 9 in nondimensional  form, one has 

V cos 0f3 15 105 63 _~_ _ _ _ _ , [ . ~ _ _ _ , [ 2  ~3 
X 

L 2 16 32 

c o s 2 0 ( 5 z _ 3 5  C 63 ) ] /  _ _ _  + _ _  , [ 3  3 ( 1  - , [ ) 5 / 2  (10a) 
4 16 

y V sin 0r3 15 105 63 __ - -  _ _  ~. + - -  ,[2 - -  _ _  ,[3 

t_ 2 16 32 

( )]/ - sin 20 5z . . . .  35 ,[2 + T3 3(1 ,[)s/2 (10b) 
4 16 

and in particular, from Equation 10a, it is 

Xw = V(3 - 25z/2 + 245,[2/16 - 189,[3/32)/3(1 - ,[)5/2 (11) 

where the subscript "w" indicates the wall. 

Boundary-layer equations 

The boundary-layer equations in a nondimensional  form can 
be written as 

(pu)x + (pv)r = 0 (12) 

p(UUx + ou r) = p,u,U,x + (#uy)y (13) 

p(uSx + vS,) = (2Sy)y/Pr + (Pr - 1)[#V~uu,]y/(Pr H=) (14) 

where the subscript "e" indicates the external inviscid condition 
calculated on the wall; # and 2 are the viscosity and thermal 
conductivity coefficients, respectively, and S = htot/htot, , - 1  
and hie t is the total enthalpy h + V2/2. The boundary  
conditions associated with Equations 12-14 are u(x,O)= 
v(x, 0) = 0; u(x, ~ )  = u=; S(x, O) = Sw, S(x, ~ )  = O. 

By means of the Dorodnitzin-Stewartson transformation 
X = S~ a~ dx; Y = a= ~ p dy; U = u/a,; V= (UY~ + pv)/a~', 
where m = ( 3 y -  1)/(~ - 1) and a= and p are nondimension- 
alized with respect to respective stagnation quantities, 
Equations 12 and 13 become 

Ux + Vr = 0 (15) 

UUx + VUr = Urr  + (1 + S)UeU.x (16) 

USx + VSr = Srr /Pr  + (Pr - 1)a2V~UUy/(Pr H,) (17) 

Notation 

a 

f, 
f~ 
A 
h 
k 
m 
P 
Pr 
S 
Si 
U, 1) 

U, V 

V 
X, y 

X, Y 

Sound velocity 
Funct ion defined by Equations 20 
Funct ion defined by Equation 6 
Funct ion defined by Equation 7 
Enthalpy 
Vr/VL 
(3~ - 1)/(~ - 1) 
Pressure 
Prandtl  number  
hto~/htot,=- 1 
Functions defined by Equations 20 
Components  of velocity along x- and y-axes 
U = u/a., V=  (UYx + pv)/a'~ (Dorodnitzin-Stewart- 
son variables) 
Modulus of velocity (V 2 --- u 2 + u 2)  

Cartesian axes 
Dorodni tzin-Stewartsen coordinates 

Greek symbols 

7 Ratio between the specific heat coefficients 
0 Angle between the velocity vector and x-axis 
2 Thermal conductivity 
# Viscosity 
p Density 

2 2 V / V  L 
(p Potential function 
~, Stream function (p,~ky = pu, P,~Px = --pv) 

Subscripts 

c Critical 
e External 
L Limiting 
r Reference 
s Stagnation 
tot Total 
w Wall 
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By introducing the stream function ~ (Or = U and Ikx = - It) 
arm the variable ~X) given by Equation 11, Equations 16 and 
17 can be written as 

~brtPr, - ~k,C'rr = ~'rrrX, + (1 + S ) U . U .  (18) 

~#r$, - ~#,Sr = S r r X , / P r  + (Pr - 1X1 - O X # x ~ k ,  V 2 / ( p r  n , )  

(19) 

These equations can be solved by putting 

= o0; s = (20) 
i = 0  i = 0  

with f~(0) --- f~(0) = 0; f~(oo) -- 1; f ' ,(oo) = 0 for i > 0; So(O) = 
S,,; Sd0) = 0 for i > 0 and S~(oo) = 0. 

By substituting Equation 20 into Equations 18 and 19, one 
has the equations for the unknownsf~ and S~. In particular, the 
leading order of the expansion gives 

f~ '  + f ~ f o  --  f o 2 = - -1  - S O 
(21) 

t 
S ~ / P r  + f o S o  = 0 

while f .  and S~, with n > 0, are given by 

f ~' + f o f ~  - 2(n + 1 ) f ' o f '  , + (2n + 1 ) f ~ f .  = - S ,  + F ,  
(22) 

S~ /Pr  + foS' .  - 2 n S . f '  o = G. 

where 

g(~) = (1 - 17z/2 + 275~2/16 - 441~a/32 + 63~*/16)/2 = ~ OF ~ 

2f"" F.  = -- "Jot#* -- 2g~_ t + g._ 2) 

+ 2(n --  1 ) f~ f~_  ~ --  2(n --  1 ) f ' o f '  , _ t  

-- 2 ~ { f~ ' ,~# , -  2~,_~ + ~,-2) +f~_,[( i  + 1/2)f~ 
i = l  

-- (i -- 1)fi_ t - - f ' . _ , [ ( i  + 1 / 2 ) f ' ~ -  (i --  1)f'~_l]} 

G. = - 2  ~ {S~_,~g, - 2a~-x + a,-2) 
i = l  

+ (n --  i )Sn_i ( f '  ~ - f ' i -  t) 

- S ' . _ i [ f , ( i  + 1/2) - (i - 1)f~_~]} - 2(Pr - 1)h./ar 

where 

h. = f ) f ~ - ~ - ~  g i - t  - 2W-2 + gi-a) 
i=O x , j = O  

The representation of ~ and S given by Equation 20 is not 
valid for any value of z. In order to evaluate the range of 
validity of such expansion and to obtain a representation valid 
for higher values of ~, we use the Pad6 representation (Bender 
and Orsag 1959) by putting a function f = ]~f~ in the rational 
form P.(O/Q.(~), where P.  and Q. are polynomials of degree 
n whose coefficients are determined from the equation 
Xz~f~ = P J Q . ,  and by imposing that such an equation is 
satisfied up to terms of order of ~2". In particular, if one writes 
P.  - ~ = o  A :  and Q~ - ~,=o BF,  one has (ZAF~XZf: ~) 
= XBF'; by equating the coefficients of the same powers of 
z, one has B~ = ~-,3=o A#f~_#. These equations must be written 
for i = 0, 1, 2 . . .  2n and must give the 2n + 1 unknowns, The 
radius of convergence r of the expansion (Equations 20) is given 
by the root of (2. = 0 having the smallest modulusi such a 
modulus is an estimation of r. The Pad6 approximants also 
gives a representation of ¢, and S valid when the expansion 
(Equation 20) does not converge. 
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Analysis of the results 

The inviscid compressible fluid-dynamic field we have studied 
is described by Equations 7-11. 

The streamlines of such a flow are drawn in Figure 1. Any 
two of these streamlines can be considered as the walls of a 
duct discharging against a plane plate. The nondimensional 
modulus of velocity, V, and its inclination 0 with respect to the 
x-axis at y = - 1 are plotted in Figure 2: in this way, the initial 
conditions of this flow are known. V and 0 at x = 0.2 and 
x = 0.5 are plotted in Figure 3. Figure 4 gives K x  versus z. 

The nonviscous solution gives the velocity U, on the plate, 
through Equation 11, that allows us to solve the boundary- 
layer equations by means of the expansion (Equations 20). The 
numerical solution of Equations 21 and 22, found using the 
Runge Kutta method, has been obtained by considering 13 
terms of Equations 20. The radius of convergence r of 
Mac-Laurin expansion has been determined by the Pad6 
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Figure 5 Comparison between MacLaurin expansion - - -  Z;6'¢ i 
and Pad6 approximant - -  of (u/Ue)y,o for Pr = 1, Pr = 0.74, and 
,%, = - 0 . 8  

approximants technique: we found r=O.06, The Pad~ 
approximants also allow to obtain a representation of the 
functions @ and S valid for values of x > r. 

The second derivative of T~f~z i and the first of TSi~ = at y = 0 
are drawn in Figures 5, 6, 7, and 8; dashed curves represent 
the expansion (Equations 20), while solid curves represent Pad~ 

approximants. The curves of Uy,O and S are drawn for Pr = 1 
and Pr = 0.74, both for Sw = -0 .8  and for S w = -0.4.  We can 
see that the two representations practically coincide when 

< r; when z > r, the Mac-Laurin series diverges while the 
Pad~ representation is regular. Nondimensional shear stress 
Uy,o and heat flux Sy,o are therefore exactly given by the Pad~ 
approximants in the entire field of interest. The same quantities 
arc drawn (for M = 0.5 and M = 0.75) versus x in Figures 9 
and 10. 
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C o n c l u d i n g  r e m a r k s  

In this paper, we have presented the solution of a compressible 
thermo-fluid-dynamic field generated by a stream that impinges 
on a plane plate. The nonviscous solution of this problem has 
been found in a simple form in the hodograph plane. The 
viscous solution has been found by using the Stewartson- 
Dorodnitzin transformation and by expanding the stream 
function and the total enthalpy in terms of the variable x = 
V2/V~. The leading terms of such expansion, given by 
Equations 21, describe the thermo-fluid-dynamic flow, in the 
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transformed plane, that occurs when U= = X and terms of 
order X 2 in Equation 17 are neglected. The value of the radius 
of convergence of the expansion is 0.06; therefore the expansion 
(Equations 20) holds for 0 < V/VL < 0.245. In order to obtain 
the solution for higher values of V, we have introduced the Pad~ 
approximation: in this way, accurate results are available for 
any subsonic value of V. 
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A p p e n d i x :  R e f e r e n c e  q u a n t i t i e s  

The reference density is the stagnation one (p,). 
The reference length is the distance L between point B, which 

represents the beginning of the equivalent duct, and the wall. 
The reference stream function ~,, is given in terms of the mass 

rate flow m = (~//,d)S P, ~/, (T~ and p, can be written in terms of 
VL and p, as: T, = (~ - I)V~/2yR, p, = (7 - 1)p,V~/27). 
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